Оценка продукта происходит не по итоговой метрике, а по каждой отдельной когорте этой метрики. Когорта — группа людей, которые сделали одно и то же действие в определенный период времени.
Пользователи разделяются на когорты, например, в момент первого посещения сайта/регистрации/установки приложения. И в дальнейшем анализ действий юзера проводится внутри каждой когорты.
3 кейса по использованию когортного анализа подготовлены с помощью сервиса t.onthe.io.
Кейс 1: почтовая рассылка
Результат email-рассылки на сайте X — конверсия отправленного письма в переходы составила 12%. Пользователи, которые зарегистрировались 3 недели назад (желтый график), переходят по ссылкам в письме в 2 раза чаще, чем пользователи, которые зарегистрировались 2 месяца назад (зеленый график).
Исходя из полученных данных можно сделать вывод, что при планировании подобной рассылки нужно ориентироваться на более новых пользователей. Поскольку те, кто зарегистрировался раньше — либо отличаются большей лояльностью к продукту (составляют ядро), либо перешли из письма случайно.
Кейс 2: рекламный баннер
Компания X запустила рекламную кампанию в Adwords. Если проводить оценку её эффективности только по доходности пользователя в день привлечения, то результаты не будут показательными.
Пользователи в первый день жизни наиболее активны и приносят 30% от всей прибыли за день. На следующий день они приносят 10% прибыли, на следующий — еще 10%. Таким образом, накапливается эффект от рекламных переходов, и деньги продолжают поступать от юзеров, привлеченных какое-то время назад, в течение всего периода использования ими продукта.
Кейс 3: тренды внутри метрики
Общий график конверсии письма рассылки показывает стабильное количество переходов с небольшим колебанием. Если провести анализ по отдельным когортам — можно увидеть проседание на графике пользователей второй недели. Этого не было видно на общем графике, потому что в тот же день была запущена рекламная кампания из кейса 2, которая увеличила количество новых пользователей с более высокой конверсией писем, получаемых в день регистрации.
Важно заметить, что эффективность новых пользователей не изменилась, но выросла их доля в общей массе. В итоге проседания в метриках рассылки скрылись маркетинговым эффектом.
Количество переходов:
Клики в процентном соотношении:
Такой анализ позволяет быстро искать источники проседаний, отличать влияние на ключевые метрики изменений в маркетинге или продукте и оперативно исправлять ситуацию.
Конспект
- Когортный анализ — относительно новый метод эффективного анализа, подробнее тут.
- Наиболее популярный фактор деления на когорты — первое посещение сайта/регистрация/установка приложения.
- Когорты позволяют анализировать тренды внутри метрики и отличать продуктовые метрики от метрик роста проекта.
This entry passed through the Full-Text RSS service - if this is your content and you're reading it on someone else's site, please read the FAQ at http://ift.tt/jcXqJW.
Комментариев нет:
Отправить комментарий