...

понедельник, 23 сентября 2013 г.

[Из песочницы] Фракталы в простых числах


Я обнаружил этот фрактал, когда разглядывал интерференцию волн на поверхности речки. Волна движется к берегу, отражается и накладывается сама на себя. Есть ли порядок в тех узорах, которые создаются волнами? Попробуем найти его. Рассмотрим не всю волну, а только вектор ее движения. «Берега» сделаем гладкими, для простоты эксперимента.


Эксперимент можно провести на обычном листке в клеточку из школьной тетради.



Или используя JavaScript реализацию алгоритма.


Английская версия: New kind of fractals — Fractals in relatively prime integers (coprime integers)


Возьмем прямоугольник со сторонами q и p. Отправим луч (вектор) из угла в угол. Луч двигается к одной из сторон прямоугольника, отражается и продолжает движение к следующей стороне. Это продолжается до тех пор, пока луч не попадет в один из оставшихся углов. Если размер стороны q и p — взаимно просты числа, то получается узор (как мы увидим позже — фрактал).


На картинке мы ясно видим, как работает этот алгоритм.



Gif-анимация:




Самое удивительное то, что с разными сторонами прямоугольника — получаем разные узоры.









Почему я называю эти узоры фракталами? Как известно, «фрактал» — это геометрическая фигура, обладающая свойствами самоподобия. Часть картинки повторяет всю картинку в целом. Если значительно увеличить размеры сторон Q и P — ясно, что эти узоры обладают свойствами самоподобия.


Попробуем увеличить. Увеличивать будем хитрым способом. Возьмем, например, узор 17x29. Следующие узоры будут: 29x(17+29=46), 46x(29+46=75)…

Одна сторона: F(n);

Вторая сторона: F(n+1)=F(n)+F(n-1);

17, 29, 46, 75, 121, 196, 317, 513, 830, 1343

Как числа Фибоначчи, только с другими первым и вторым членом последовательности: F(0)=17, F(1)=29.











Дальше фракталы циклически повторяются.


Если большая сторона четная, получается такой узор:



Если меньшая сторона четная:



Если обе стороны нечетные — получаем симметрический узор:




В зависимости от того, как начинается луч:



или


Попробую объяснить, что происходит в этих прямоугольниках.


Отделим от прямоугольника квадрат, и посмотрим, что происходит на границе.



Луч выходит в той-же точке, откуда зашел.



При этом, количество квадратиков, которые проходит луч — всегда четное число.


Поэтому, если отрезать от прямоугольника квадрат — останется не измененная часть фрактала.


Если отделять от фрактала квадраты столько раз, сколько это возможно — можно добраться до «начала» фрактала.



Похоже на спираль Фибоначчи?



Из чисел Фибоначчи тоже можно получить фракталы.


В математике числами Фибоначчи (ряд Фибоначчи, последовательность Фибоначчи) называют числа:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597…

По определению, первые две цифры в последовательности Фибоначчи 0 и 1, а каждое последующее число равно сумме двух предыдущих.

F(n)=F(n-1)+F(n-2)

F(0)=0, F(1)=1



Поехали:





Как мы видим, чем ближе отношение сторон приближается к золотому сечению — тем больше детализация фрактала.



При этом фрактал повторяет часть фрактала, увеличенного на .


Вместо чисел Фибоначчи можно использовать иррациональные размеры сторон:



Получим тот-же фрактал.


Те-же фракталы можно получить и в квадрате, если пускать луч под другим углом:



Что можно сказать в заключении?

Хаос — это тоже порядок. Со своими закономерностями. Порядок этот не изученный, но вполне поддающийся изучению. А все стремление науки — обнаружить эти закономерности. И в конечном итоге соединить детали головоломки, чтобы увидеть общую картину.

Давайте посмотрим на поверхность речки. Если бросить в нее камень — пойдут волны. Круги, вполне поддающиеся изучению. Скорость, период, длину волны — все это можно подсчитать. Но до тех пор, пока волна не дойдет до берега, не отразиться и не начнет накладываться на саму себя. Получим хаос (интерференцию), который уже трудно поддается изучению.

Что если двигаться от обратного? Упростить поведение волны на столько, на сколько это возможно. Упростить, найти закономерность и после этого попробовать описать уже полную картину происходящего.

Что можно упростить? Очевидно, что сделать отражающую поверхность прямой, без изгибов. Далее, вместо самой волны, использовать только вектор движения волны. В принципе, этого достаточно, чтобы построить простой алгоритм и смоделировать процесс на компьютере. И даже вполне достаточно, чтобы сделать «модель» поведения волны на обычном листке в клеточку.

Что имеем в результате? В результате видим, что в волновых процессах (та-же рябь на поверхности речки) имеем не хаос, а наложение фракталов (самоподобных структур) друг на друга.


Рассмотрим другой вид волн. Как известно, электромагнитная волна состоит из трех векторов — волновой вектор и вектора напряженности электрического и магнитного поля. Как видим, если «словить» такую волну в замкнутой области – там, где пересекаются эти вектора, получаем вполне четкие замкнутые структуры. Быть может, элементарные частицы – это такие-же фракталы?



Все фрактальчики в прямоугольниках от 1 до 80 (6723х6723 px):


Замкнутые области во фракталах (6723х6723 px):



Просто красивый фрактал (4078x2518 px):


Если у вас хватило терпения дочитать до конца, еще раз JavaScript реализация алгоритма :)


This entry passed through the Full-Text RSS service — if this is your content and you're reading it on someone else's site, please read the FAQ at fivefilters.org/content-only/faq.php#publishers. Five Filters recommends:



Комментариев нет:

Отправить комментарий