...

понедельник, 23 сентября 2013 г.

Гравитационный поиск. Gravitational Search

Итак, у нас есть некоторая функция, которую необходимо минимизировать: . Кроме этого, есть область , в которой генерируются начальные позиции частиц. В соответствии с планом работы GS, начинается все с генерации системы частиц , где — максимальное количество частиц в системе.

Сила, действующая в момент времени на -ю частицу со стороны -й, рассчитывается по формуле , где — активная гравитационная масса -й частицы, — пассивная гравитационная масса -й частицы, — гравитационная постоянная в соответствующий момент времени, — малая константа, — евклидово расстояние между частицами.


Чтобы алгоритм был не детерминированным, а стохастическим, в формулу расчета результирующей силы добавляются случайные величины (равномерно распределенные от нуля до единицы). Тогда результирующая сила равна .


Посчитаем ускорения и скорости: , где — операция покомпонентного умножения векторов, — случайная величина, равномерно распределенная от нуля до единицы, — инертная масса -й частицы.


Остается пересчитать положение частиц. Сделать это очень просто: .


К текущему моменту осталось два вопроса: как изменяется гравитационная постоянная и как рассчитывать массы частиц. Значение гравитационной постоянной должно определяться монотонно убывающей функцией, зависящей от начального значений постоянной и момента времени , т.е. .

Например, можно брать следующие функции:




Теперь можно приступить к заключительной части повествования: к пересчету масс. В простейшем случае все три массы (пассивная, активная и инерциальная) приравниваются: . Тогда значение масс можно пересчитать по формуле: , где .

Конечно, можно рассчитывать массы исходя из их физического значения, тем не менее Рашеди об этом не говорит (и никто из авторов, которых я смог найти).

This entry passed through the Full-Text RSS service — if this is your content and you're reading it on someone else's site, please read the FAQ at fivefilters.org/content-only/faq.php#publishers. Five Filters recommends:



Комментариев нет:

Отправить комментарий