Робота портов ввода/вывода
Изучив данный материал, в котором все очень детально и подробно описано с большим количеством примеров, вы сможете легко овладеть и программировать порты ввода/вывода микроконтроллеров AVR.
- Робота портов ввода/вывода
- Подключение светодиода к линии порта ввода/вывода
- Подключение транзистора к линии порта ввода/вывода
- Подключение кнопки к линии порта ввода/вывода
Пример будем расматривать на микроконтроллере ATMega8.
Программу писать будем в Atmel Studio 6.0.
Емулировать схему будем в Proteus 7 Professional.
С внешним миром микроконтроллер общается через порты ввода вывода. Схема порта ввода вывода указана в даташите:
Но новичку разобраться довольно со схемой довольно сложно. Поэтому схему упростим:
Pxn – имя ножки порта микроконтроллера, где x буква порта (A, B, C или D), n номер разряда порта (7… 0).
Cpin — паразитная емкость порта.
VCC — напряжение питания.
Rpu — отключаемый нагрузочный верхний резистор (pull-up).
PORTxn — бит n регистра PORTx.
PINxn — бит n регистра PINx.
DDRxn — бит n регистра DDRx.
Рассмотрим, что же представляет собой вывод микроконтроллера. На входе микроконтроллера стоит небольшая защита из двух диодов (см.1) , она предназначенная для защиты ввода микроконтроллера от кратковременных импульсов напряжения, превышающих напряжение питания. Если напряжение будет выше питания, то верхний диод откроется и это напряжение будет стравлено на шину питания, где с ним будет уже бороться источник питания и его фильтры. Если на ввод попадет отрицательное (ниже нулевого уровня) напряжение, то оно будет нейтрализовано через нижний диод и погасится на землю. Впрочем, диоды там хилые и защита эта помогает только от микроскопических импульсов и помех. Если же на ножку микроконтроллера подать вольт 6-7 при 5 вольтах питания, то внутренние диоды его не спасут.
Конденсатор (см.2) — это паразитная емкость вывода. Хоть она и крошечная, но присутствует. Обычно ее не учитывают, но она есть. Не забивай голову, просто знай это.
Дальше идут ключи управления (см.3,4) . Каждый ключ подчинен логическому условию, которые нарисованы на рисунке. Когда условие выполняется — ключ замыкается.
Каждый порт микроконтроллера AVR (обычно имеют имена A, B и иногда C или даже D) имеет 8 разрядов, каждый из которых привязан к определенной ножке корпуса. Каждый порт имеет три специальных регистра DDRx, PORTx и PINx (где x соответствует букве порта A, B, C или D). Назначение регистров:
DDRx – Настройка разрядов порта x на вход или выход.
PORTx – Управление состоянием выходов порта x (если соответствующий разряд настроен как выход), или подключением внутреннего pull-up резистора (если соответствующий разряд настроен как вход).
PINx –Чтение логических уровней разрядов порта x.
PINхn – это регистр чтения. Из него можно только читать. В регистре PINxn содержится информация о реальном текущем логическом уровне на выводах порта. Вне зависимости от настроек порта. Так что если хотим узнать что у нас на входе — читаем соответствующий бит регистра PINxn. Причем существует две границы: граница гарантированного нуля и граница гарантированной единицы — пороги за которыми мы можем однозначно четко определить текущий логический уровень. Для пятивольтового питания это 1.4 и 1.8 вольт соответственно. То есть при снижении напряжения от максимума до минимума бит в регистре PINx переключится с 1 на 0 только при снижении напруги ниже 1.4 вольт, а вот когда напруга нарастает от минимума до максимума переключение бита с 0 на 1 будет только по достижении напряжения в 1.8 вольта. То есть возникает гистерезис переключения с 0 на 1, что исключает хаотичные переключения под действием помех и наводок, а также исключает ошибочное считывание логического уровня между порогами переключения.
При снижении напряжения питания разумеется эти пороги также снижаются.
DDRxn – это регистр направления порта. Порт в конкретный момент времени может быть либо входом либо выходом (но для состояния битов PINxn это значения не имеет. Читать из PINxn реальное значение можно всегда).
DDRxy = 0 – вывод работает как ВХОД.
DDRxy = 1 – вывод работает на ВЫХОД.
PORTxn – режим управления состоянием вывода. Когда мы настраиваем вывод на вход, то от PORTх зависит тип входа (Hi-Z или PullUp, об этом чуть ниже).
Когда ножка настроена на выход, то значение соответствующего бита в регистре PORTx определяет состояние вывода. Если PORTxn=1 то на выводе лог.1, если PORTxn=0 то на выводе лог.0.
Когда ножка настроена на вход, то если PORTxn=0, то вывод в режиме Hi-Z. Если PORTxn=1 то вывод в режиме PullUpс подтяжкой резистором в 100к до питания.
Таблица. Конфигурация выводов портов.
DDRxn PORTxn I/O Comment
0 0 I (Input) Вход Высокоимпендансный вход. (Не рекомендую использовать, так как могут наводится наводки от питания)
0 1 I (Input) Вход Подтянуто внутренне сопротивление.
1 0 O (Output) Выход На выходе низкий уровень.
1 1 O (Output) Выход На выходе высокий уровень.
Общая картина работы порта показана на рисунках:
Рис. DDRxn=0 PORTxn=0 – Режим: HI-Z – высоко импендансный вход.
Рис. DDRxn=0 PORTxn=1 – Режим: PullUp – вход с подтяжкой до лог.1.
Рис. DDRxn=1 PORTxn=0 – Режим: Выход – на выходе лог.0. (почти GND)
Рис. DDRxn=1 PORTxn=1 – Режим: Выход – на выходе лог.1. (почти VCC)
Вход Hi-Z — режим высокоимпендансного входа.
Этот режим включен по умолчанию. Все ключи разомкнуты, а сопротивление порта очень велико. В принципе, по сравнению с другими режимами, можно его считать бесконечностью. То есть электрически вывод как бы вообще никуда не подключен и ни на что не влияет. Но! При этом он постоянно считывает свое состояние в регистр PINn и мы всегда можем узнать что у нас на входе — единица или ноль. Этот режим хорош для прослушивания какой либо шины данных, т.к. он не оказывает на шину никакого влияния. А что будет если вход висит в воздухе? А в этом случае напряжение будет на нем скакать в зависимости от внешних наводок, электромагнитных помех и вообще от фазы луны и погоды на Марсе (идеальный способ нарубить случайных чисел!). Очень часто на порту в этом случае нестабильный синус 50Гц — наводка от сети 220В, а в регистре PINn будет меняться 0 и 1 с частотой около 50Гц
Вход PullUp — вход с подтяжкой.
При DDRxn=0 и PORTxn=1 замыкается ключ подтяжки и к линии подключается резистор в 100кОм, что моментально приводит неподключенную никуда линию в состояние лог.1. Цель подтяжки очевидна — недопустить хаотичного изменения состояния на входе под действием наводок. Но если на входе появится логический ноль (замыкание линии на землю кнопкой или другим микроконтроллером/микросхемой), то слабый 100кОмный резистор не сможет удерживать напряжение на линии на уровне лог.1 и на входе будет лог.0.
Режим выхода.
Тут, думаю, все понятно — если нам надо выдать в порт лог.1, мы включаем порт на выход (DDRxn=1) и выдаем лог.1 (PORTxn=1) — при этом замыкается верхний ключ и на выводе появляется напряжение, близкое к питанию. А если надо лог.0, то включаем порт на выход (DDRxn=1) и выдаем лог.0 (PORTxn=1) — при этом открывается уже нижний вентиль, что дает на выводе около нуля вольт.
This entry passed through the Full-Text RSS service - if this is your content and you're reading it on someone else's site, please read the FAQ at http://ift.tt/jcXqJW.
Комментариев нет:
Отправить комментарий