[unable to retrieve full-text content]
Привет, Хабр! В нашей работе часто возникает потребность в выделении сообществ (кластеров) разных объектов: пользователей, сайтов, продуктовых страниц интернет-магазинов. Польза от такой информации весьма многогранна – вот лишь несколько областей практического применения качественных кластеров:
- Выделение сегментов пользователей для проведения таргетированных рекламных кампаний.
- Использование кластеров в качестве предикторов («фичей») в персональных рекомендациях (в content-based методах или как дополнительная информация в коллаборативной фильтрации).
- Снижение размерности в любой задаче машинного обучения, где в качестве фичей выступают страницы или домены, посещенные пользователем.
- Сличение товарных URL между различными интернет-магазинами с целью выявления среди них групп, соответствующих одному и тому же товару.
- Компактная визуализация — человеку будет проще воспринимать структуру данных.
С точки зрения машинного обучения получение подобных связанных групп выглядит как типичная задача кластеризации. Однако не всегда нам бывают легко доступны фичи наблюдений, в пространстве которых можно было бы искать кластеры. Контентые или семантические фичи достаточно трудоемки в получении, как и интеграция разных источников данных, откуда эти фичи можно было бы достать. Зато у нас есть DMP под названием Facetz.DCA, где на поверхности лежат факты посещений пользователями страниц. Из них легко получить количество посещений сайтов, как каждого в отдельности, так и совместных посещений для каждой пары сайтов. Этой информации уже достаточно для построения графов веб-доменов или продуктовых страниц. Теперь задачу кластеризации можно сформулировать как задачу выделения сообществ в полученных графах.
Читать дальше →
Комментариев нет:
Отправить комментарий