...

понедельник, 17 августа 2015 г.

Методы отбора фич

Эта статья — обзор, компиляция из нескольких источников, полный список которых я приведу в конце. Отбор фич (feature selection) — важная составляющая машинного обучения. Поэтому мне захотелось лучше разобраться со всевозможными его методами. Я получила большое удовольствие от поиска информации, чтения статей, просмотра лекций. И хочу поделиться этими материалами с вами. Я постаралась написать статью так, чтобы она требовала минимальных знаний в области и была доступна новичкам.

В тексте везде идет речь про обучение с учителем. Набор данных для обучения модели называется тренировочный сет. Независимые переменные носят названия фичи, зависимую я называю целевой переменной. Я предполагаю, что эти слова читателю знакомы.

Отбор фич (feature selection)


Почему отбор фич вообще необходим. Основных причин две. Во-первых, если фич очень много, то увеличивается время работы классификатора. Если стоит цель протестировать несколько классификаторов с целью выбора лучшего, то время необходимое на вычисления может стать просто огромным. Кроме того, данные (тренировочный сет) могут перестать помещаться в оперативную память, тогда придется модифицировать алгоритмы классификаторов. Может перестать помещаться даже одна строка сета, хотя это уже редкий случай.
Главная причина все-таки вторая — с увеличением количества фич часто падает точность предсказания. Особенно если в данных много мусорных фич (мало коррелирующих с целевой переменной). Это явление называется переобучение (overfitting).

Методы отбора фич делятся на три категории: filter methods, wrapper methods и embedded methods. Первую категорию я буду назвать “методы фильтрации”, последнюю — “встроенные методы”, а для второй у меня нет адекватного перевода (выслушаю предложения).

Методы фильтрации (filter methods)


Они основаны на статистических методах и, как правило, рассматривают каждую фичу независимо. Позволяют оценить и ранжировать фичи по значимости, за которую принимается степень корреляции этой фичи с целевой переменной. Рассмотрим несколько примеров.

Informaition gain


Один из примеров методов фильтрации фич (filter methods) — informaition gain. Он тесно связан с понятием энтропии информации. Формулой энтропия выражается довольно просто:
H(X)=-\sum_{x_{i}\in X}p(x_{i})*log_{2}(p(x_{i}))

Где, p(xi) — вероятность того, что переменная X примет значение xi. В наших условиях эта вероятность считается как количество записей (примеров), в которых X=xi, разделенное на общее количество записей.
Чтобы лучше понять смысл этой меры, можно представить два простых примера. Во-первых, подбрасывание монетки, у которой выпадение орла и решки равновероятны. В этом случае энтропия, рассчитанная по формуле, будет равна 1. Если же монета всегда падает исключительно орлом вверх, то энтропия будет равна 0. Иными словами высокая энтропия говорит о равномерном распределении, низкая — о каком-то более интересном.
Для расчета корреляции между переменными нам понадобится определить еще несколько мер. Первая из них — specific conditional entropy:
H(Y|X=x_{i})
— энтропия H(Y) посчитанная только для тех записей, для которых X=xi.
Относительная энтропия (conditional entropy) считается как:
H(Y|X)=\sum_{x_{i}\in X}p(x_{i})*H(Y|X=x_{i})

Интересная такая величина не сама по себе, а ее разница с обычной энтропией фичи Y. Т.е. как бы мера того, насколько более упорядоченной становится для нас переменная Y, если мы знаем значения X. Или, говоря проще, существует ли корреляция между значениями X и Y, и насколько она велика. Об этом говорит величина information gain:
IG(Y|X)=H(Y)-H(Y|X)

Чем больше параметр IG — тем сильнее корреляция. Таким образом, мы легко можем вычислить information gain для всех фич и выкинуть те, которые слабо влияют на целевую переменную. Тем самым, во-первых, сократив время расчета модели, а, во-вторых, уменьшив опасность переобучения.
Путаница с Mutual information и Information gain
В википедии формула, обозначенная выше, носит название mutual informaition, а informaition gain используется как синоним “расстояния Кульбака — Лейблера”. Но в большинстве случаев information gain и mutual information (взаимная информация) все-таки используют как разные названия одного и того же. Поэтому формула выше может встретиться вам под любым из этих названий. Я буду называть эту меру informaition gain просто потому, что мне так привычнее.

Хи-квадрат (chi-square)


Рассмотрим еще один популярный метод фильтрации фич, называемый chi-square test. Для того чтобы в нем разобраться понадобится вспомнить пару формул из теории вероятности. Первая из них это формула для вероятности пересечения (умножения) событий. Т.е. вероятность того, что произойдут оба события A и B:
P(A\cap B)=P(A/B)*P(B)

Где P(A/B) — вероятность того, что произойдет событие A, если B уже наступило. Если эти события независимы (наступление одного из них никак не влияет на вероятность наступления другого), то:
P(A\cap B)=P(A)*P(B)

Исходя из этой формулы, можно посчитать ожидаемую вероятность наступления одновременно событий A и B, если мы предполагаем, что они независимы. А затем вычислить, насколько реальность отличается от наших ожиданий. Формула хи-квадрат выглядит так:
\chi^{2}=\sum \frac{(observed - expected)^{2}}{expected}

Рассмотрим ее использование на примере. Предположим, мы хотим исследовать влияние некого воздействия на возникновение определенной болезни. Таблица с имеющейся у нас статистикой выглядит так:
Болезнь
Воздействие Есть Нет Всего
Было 37 13 50
Не было 17 53 70
Всего 54 66 120

Где ячейка на пересечении первой строки и первого столбца отражает количество подвергшихся воздействию и заболевших; первой строки и второго столбца — количество подвергшихся воздействию, но не заболевших и т.д.
Рассчитаем ожидаемое значение для первой ячейки (те, кто подвергся воздействию и заболел):
expected = \frac{50}{120}*\frac{54}{120}*120

Аналогично для других ячеек. И по формуле вычисляем хи-квадрат (в данном случае он равен 29.1).
Таким образом, для независимых событий параметр хи-квадрат будет равен нулю (или числу близкому к нему). Но чтобы точно понять, какова вероятность получить такую картину для двух независимых событий, вводят еще одно понятие — степень свободы. Она определяется как:
(#значения_переменной1 — 1)*(#значения_переменной_2 — 1)
Где #значения_переменной1 — количество значений, которые может принимать переменная 1 (для нашего случая степень свободы = 1).
Для того чтобы имея значение хи-квадрат и степень свободы можно было прикинуть вероятность существуют специальные таблицы (типа этой(http://ift.tt/1IXZ8js)).

Некоторое представление о работе алгоритма мы получили. Но разумеется в реальности не будет необходимости ни писать этот алгоритм самостоятельно, ни тем более считать статистику вручную. Библиотека scikit-learn для питона дает возможность не задумываться о деталях реализации:

from nltk import WordNetLemmatizer
from sklearn.feature_selection import chi2
from sklearn.feature_selection import SelectKBest
select = SelectKBest(chi2, k=50)
X_new = select.fit_transform(train_data_features, train["sentiment"])

В моей прошлой статье как раз можно найти пример эффективности применения хи-квадрат статистики для решения NLP задачи.

mRmR


Отдельно хочу кратко остановиться на более сложном методе фильтрации, который учитывает не только корреляцию между фичами и целевой переменной, но так же избыточность фич — mRmR (минимальная избыточность при максимальной релевантности). Метод пытается максимизировать следующее выражение:
max[\frac{1}{S}\sum_{x_{i}\in S} IG(Y|x_{i}) - \frac{1}{S^{2}}\sum_{x_{i},x_{j}\in S} IG(x_{i}|x_{j})]

Где первое слагаемое отвечает за максимизацию корреляции между выбранным набором фич S и целевой переменной Y (аналогично методу informaition gain), а второе за минимизацию корреляций между фичами. Таким образом полученный набор фич не только релевантен, но и фичи в этом наборе минимально повторяют друг друга. В этом методе фичи в набор добавляются по одной с выбором оптимальной на каждом шаге.

Плюсы и минусы методов фильтрации


Чем этот класс методов хорош? У них низкая стоимость вычислений, которая зависит линейно от общего количества фич. Они значительно быстрее и wrapper и embedded методов. К тому же они хорошо работают даже тогда, когда число фич у нас превышает количество примеров в тренировочном сете (чем далеко не всегда могут похвастаться методы других категорий).

В чем их недостатки? Они рассматривают каждую фичу изолированно. Из-за этого найти топ-N наиболее коррелирующих фич вообще говоря не означает получить подмножество, на котором точность предсказания будет наивысшей. Рассмотрим простой пример.

Предположим, что есть некий массив фич, среди которых X1 и X2. Целевая переменная зависит от них как:

Y=X_{1} \oplus X_{2}

(логическая функция XOR)
Таблица истинности будет выглядеть так (если кто забыл):
X1 X2 Y
0 0 0
0 1 1
1 0 1
1 1 0

Глядя на эту таблицу, построим таблицу со статистикой для переменной X1 и вычислим ее корреляцию с переменной Y (для X2 будет аналогично) по формуле хи-квадрат.
Y
X1 1 0 Всего
1 1 1 2
0 1 1 2
Всего 2 2 4

Легко посчитать, что хи-квадрат будет равен 0, то есть никакой корреляции между фичей и целевой переменной не покажет.

Пример утрирован, но он хорошо показывает, что методы фильтрации не способны уловить совместное влияние нескольких фич на целевую переменную.

Wrapper methods


Суть этой категории методов в том, что классификатор запускается на разных подмножествах фич исходного тренировочного сета. После чего выбирается подмножество фич с наилучшими параметрами на обучающей выборке. А затем он тестируется на тестовом сете (тестовый сет не участвует в процессе выбора оптимального подмножества).

Есть два подхода в этом классе методов — методы включения (forward selection) и исключения (backwards selection) фич. Первые стартуют с пустого подмножества, куда постепенно добавляются разные фичи (для выбора на каждом шаге оптимального добавления). Во втором случае метод стартует с подмножества равного исходному множеству фич, и из него постепенно удаляются фичи, с пересчетом классификатора каждый раз.

Один из примеров таких методов — recursive feature elimination. Как следует из названия, он относится к алгоритмам постепенного исключения фич из общего пула. На питоне реализация этого алгоритма есть в библиотеке scikit-learn. Этот метод требует выбрать классификатор, с помощью которого будут оцениваться фичи, например, линейная регрессия:

from sklearn.feature_selection import RFE
from sklearn.linear_model import LinearRegression
 
data= load_data()
X = data["data"]
Y = data["target"]
lr = LinearRegression()
#select 5 the most informative features
rfe = RFE(lr, 5) 
selector = rfe.fit(X,Y)


Хотя метод исключения лучше отслеживает взаимосвязи между фичами, он гораздо дороже вычислительно. Впрочем, все wrapper methods требуют гораздо больших вычислений, чем методы фильтрации. К тому же в случае большого количества фич и небольшого размера тренировочного сета эти методы имеют опасность переобучения.

Встроенные методы (embedded methods)


И наконец, встроенные методы, которые позволяют не разделять отбор фич и обучение классификатора, а производят отбор внутри процесса расчета модели. К тому же эти алгоритмы требуют меньше вычислений, чем wrapper methods (хотя и больше, чем методы фильтрации).

Основным методом из этой категории является регуляризация. Существуют различные ее разновидности, но основной принцип общий. Если рассмотреть работу классификатора без регуляризации, то она состоит в построении такой модели, которая наилучшим образом настроилась бы на предсказание всех точек тренировочного сета.
Например, если алгоритм классификации линейная регрессия, то подбираются коэффициенты полинома, который аппроксимирует зависимость между фичами и целевой переменной. В качестве оценки качества подобранных коэффициентов выступает среднеквадратичная ошибка (RMSE). Т.е. параметры подбираются так, чтобы суммарное отклонение (точнее суммарный квадрат отклонений) у точек предсказанных классификатором от реальных точек было минимальным.
Идея регуляризации в том, чтобы построить алгоритм минимизирующий не только ошибку, но и количество используемых переменных.

Метод регуляризации Тихонова (ridge regression)


Рассмотрим все так же на примере линейной регрессии. Если в тестовом сете дана матрица фич A и вектор целевой переменной b, то мы ищем решение в виде Ax=b. В процессе работы алгоритма минимизируется такое выражение:
\left \| Ax-y \right \|^{2}+\alpha \left \| x \right \|^{2}

Где первое слагаемое это как раз среднеквадратичная ошибка, а второе — регуляризирующий оператор (сумма квадратов всех коэффициентов, умноженная на альфа). В процессе работы алгоритма размеры коэффициентов будут пропорциональны важности соответствующих переменных, а перед теми переменными, которые дают наименьший вклад в устранение ошибки, станут околонулевые.
Пара слов о параметре альфа. Он позволяет настраивать вклад регуляризирующего оператора в общую сумму. С его помощью мы можем указать приоритет — точность модели или минимальное количество используемых переменных.

Если мы хотим использовать линейную регрессию с регуляризацией Тихонова, то нет необходимости изобретать велосипед. В библиотеке scikit-learn есть модель под названием Ridge regression, которая включает в себя этот тип регуляризации.

from sklearn.linear_model import Ridge
data= load_data()
X = data["data"]
y = data["target"]
clf = Ridge(alpha=1.0)
clf.fit(X, y)


Обратите внимание на возможность вручную настроить параметр альфа.

LASSO


Аналогичен предыдущему во всем кроме отличия в регуляризирующем операторе. Он представляет собой не сумму квадратов, а сумму модулей коэффициентов. Несмотря на незначительность различия, свойства отличаются. Если в ridge по мере роста альфа все коэффициенты получают значения все ближе к нулевым, но обычно при этом все-таки не зануляются. То в LASSO с ростом альфа все больше коэффициентов становятся нулевыми и совсем перестают вносить вклад в модель. Таким образом, мы получаем действительно отбор фич. Более значимые фичи сохранят свои коэффициенты ненулевыми, менее значимые — обнулятся. Подробнее послушать об этих свойствах и взглянуть на графики (а за одно узнать про Elastic Net, на котором я не стану останавливаться) можно, например, в этой лекции.

Использование этого метода с помощью библиотеки scikit-learn так же идентично предыдущему методу. Только Ridge заменяется на Lasso.

Таким образом, регуляризация — это своеобразный штраф за излишнюю сложность модели, который позволяет защитить себя от перетренировки в случае наличия среди фич мусорных. Не стоит думать, что регуляризация бывает только в линейных моделях, и для бустинга и для нейросетей существуют свои методы регуляризации.
Из минусов регуляризации можно отметить тот факт, что модель строится на всем массиве фич а значит, она не ускоряет работу классификатора. Но в общем случае этот метод способен лучше уловить взаимозависимости переменных, чем методы фильтрации.

В заключение


Я не буду здесь писать выводы о критериях выбора того или иного метода в конкретной ситуации. В большинстве случаев проще и удобнее всего будет обратиться к встроенным методам. В случае если нужна наглядность — методы фильтрации могут ее обеспечить. Остальное, я думаю, вопрос практики.

Буду рада услышать комментарии. Если, по вашему мнению, в тексте есть неточность, чего-то не хватает, что-то непонятно, хотите поделиться своим практическими наблюдениями — пишите.

Ссылки


http://ift.tt/1IXZ8zM
http://ift.tt/1yd5s3s
http://ift.tt/1Wyg2hQ
http://ift.tt/1IXZ8zO
http://ift.tt/1Wyg2yc
http://ift.tt/1IXZ8zQ
http://ift.tt/1IXZ6In
http://ift.tt/1Wyg09M
http://ift.tt/1IXZ8zR
http://ift.tt/1hJMfAz

This entry passed through the Full-Text RSS service - if this is your content and you're reading it on someone else's site, please read the FAQ at http://ift.tt/jcXqJW.

Комментариев нет:

Отправить комментарий