Спасибо администрации Хабра за отзывчивость и молниеносную оперативность при восстановлении аккаунта!
Итак, плоды усилий долгих...
Нерекурсивный алгоритм генерации всех разбиений целого числа в лексикографическом
порядке, когда все элементы выстроены в порядке убывания, является альтернативным; в
Интернете представлено несколько способов порождения данных комбинаторных
объектов, однако, как это справедливо и относительно других комбинаторных алгоритмов,
реализации сводятся к двум типам — нерекурсивному и рекурсивному. Чаще можно встретить
реализации, которые не учитывают порядок вывода объектов или осуществляют
вывод по принципу дробления числа.
Приведенная ниже реализация работает по обратному
принципу: исходное число изначально разбито на единицы, алгоритм работает до тех пор,
пока число в нулевом индексе массива не станет равным сумме исходного числа.
Особенностью данного алгоритма является то, что он крайне прост для понимания, однако
это не лишает его некоторый специфики:
1) первый объект просто выводится на экран в
самом начале, таким образом, он вынесен за пределы циклов, фактически является
инициализирующим;
2) существует несколько способов реализации переноса единицы,
которые могут, как упростить код, так и сделать его более запутанным;
3) данная нерекурсивная реализация может служить наглядным примером для объяснения генерации комбинаторных объектов на нескольких процессорах, после незначительной модификации. Код на языке PHP приведен только для демонстрации корректности алгоритма и может содержать лишние языковые средства, которые добавляют реализации избыточности.
Описание алгоритма
Дано: исходный массив в виде единиц — А (1,1,1,1).
Шаги
1) Двигаясь по массиву слева направо, искать в массиве А минимальный элемент — x,
последний элемент не учитывается.
2) Перенести единицу из конца (последнего элемента) в найденный минимальный элемент x
(равносильно увеличению x на единицу и уменьшению на единицу последнего элемента).
3) Если в массиве А есть ноль — 0, то удалить последний элемент.
4) Разложить сумму всех элементов после измененного элемента — x – на единицы.
Пример
А=(1,1,1,1,1)
2,1,1,1
2,2,1
3,1,1
';
$w = count($a);
$h = 0;
while ($a[0] != $w)
{
$min = $a[0];
$c = count($a) - 1;
$i = 0;
while ($i != count($a) - 1)
{
if ($a[$i] < $min)
{
$min = $a[$i];
$min2 = $i;
}
$i++;
}
if ($min2 == 0) $min2 = 0;
$a[$min2]+= 1;
$a[$c]-= 1;
if (in_array(0, $a)) array_pop($a);
array_splice($a, $min2 + 1);
foreach($a as $v)
{
$sum+= $v;
}
$j = 0;
$all = $w - $sum;
while ($j != $all)
{
$a[] = 1;
$j++;
}
print_r($a);
print '
';
unset($all);
unset($sum);
unset($min);
unset($min2);
$h++;
}
echo 'Amount: ' . ++$h;
?>
Выводы
Хотел бы в конце поделиться одним наблюдением, я очень долго пытался понять, почему одни алгоритмы понятны сразу и легки для кодирования, а другие заставляют мучиться… и мучиться порой долго. Должен отметить, что этот алгоритм у меня получилось закодировать почти сразу, но только после того, как я получил однозначно понятное описание каждого шага. И тут есть важный момент, понять алгоритм и описать — задачи одна другой не легче. Однако, в алгоритмизации и составлении описания, особенно важным оказывается то, какими глаголами описываются действия в алгоритме — это (субъективно) в конечном счете может влиять и на конечную реализацию.
Литература
[1] Donald E. Knuth. The Art of Programming. Vol. 4. 2008.
[2] Dennis Ritchie and Brian Kernighan. The C Programming Language. 1978.
[3] Aleksandr Shen. Algorithms and Programming: Problems and Solutions.
[4] http://ift.tt/2rc6MaY
[5] http://ift.tt/2rFIxTU
P.S. Несмотря на приведенный список литературы, алгоритм пришлось выводить заново.
Комментарии (0)