class NeuralGas():
__metaclass__ = ABCMeta
def __init__(self, data, surface_graph=None, output_images_dir='images'):
self._graph = nx.Graph()
self._data = data
self._surface_graph = surface_graph
# Deviation parameters.
self._dev_params = None
self._output_images_dir = output_images_dir
# Nodes count.
self._count = 0
if os.path.isdir(output_images_dir):
shutil.rmtree('{}'.format(output_images_dir))
print("Ouput images will be saved in: {0}".format(output_images_dir))
os.makedirs(output_images_dir)
self._start_time = time.time()
@abstractmethod
def train(self, max_iterations=100, save_step=0):
raise NotImplementedError()
def number_of_clusters(self):
return nx.number_connected_components(self._graph)
def detect_anomalies(self, data, threshold=5, train=False, save_step=100):
anomalies_counter, anomaly_records_counter, normal_records_counter = 0, 0, 0
anomaly_level = 0
start_time = self._start_time = time.time()
for i, d in enumerate(data):
risk_level = self.test_node(d, train)
if risk_level != 0:
anomaly_records_counter += 1
anomaly_level += risk_level
if anomaly_level > threshold:
anomalies_counter += 1
#print('Anomaly was detected [count = {}]!'.format(anomalies_counter))
anomaly_level = 0
else:
normal_records_counter += 1
if i % save_step == 0:
tm = time.time() - start_time
print('Abnormal records = {}, Normal records = {}, Detection time = {} s, Time per record = {} s'.
format(anomaly_records_counter, normal_records_counter, round(tm, 2), tm / i if i else 0))
tm = time.time() - start_time
print('{} [abnormal records = {}, normal records = {}, detection time = {} s, time per record = {} s]'.
format('Anomalies were detected (count = {})'.format(anomalies_counter) if anomalies_counter else 'Anomalies weren\'t detected',
anomaly_records_counter, normal_records_counter, round(tm, 2), tm / len(data)))
return anomalies_counter > 0
def test_node(self, node, train=False):
n, dist = self._determine_closest_vertice(node)
dev = self._calculate_deviation_params()
dev = dev.get(frozenset(nx.node_connected_component(self._graph, n)), dist + 1)
dist_sub_dev = dist - dev
if dist_sub_dev > 0:
return dist_sub_dev
if train:
self._dev_params = None
self._train_on_data_item(node)
return 0
@abstractmethod
def _train_on_data_item(self, data_item):
raise NotImplementedError()
@abstractmethod
def _save_img(self, fignum, training_step):
"""."""
raise NotImplementedError()
def _calculate_deviation_params(self, distance_function_params={}):
if self._dev_params is not None:
return self._dev_params
clusters = {}
dcvd = self._determine_closest_vertice
dlen = len(self._data)
#dmean = np.mean(self._data, axis=1)
#deviation = 0
for node in self._data:
n = dcvd(node, **distance_function_params)
cluster = clusters.setdefault(frozenset(nx.node_connected_component(self._graph, n[0])), [0, 0])
cluster[0] += n[1]
cluster[1] += 1
clusters = {k: sqrt(v[0]/v[1]) for k, v in clusters.items()}
self._dev_params = clusters
return clusters
def _determine_closest_vertice(self, curnode):
"""."""
pos = nx.get_node_attributes(self._graph, 'pos')
kv = zip(*pos.items())
distances = np.linalg.norm(kv[1] - curnode, ord=2, axis=1)
i0 = np.argsort(distances)[0]
return kv[0][i0], distances[i0]
def _determine_2closest_vertices(self, curnode):
"""Where this curnode is actually the x,y index of the data we want to analyze."""
pos = nx.get_node_attributes(self._graph, 'pos')
l_pos = len(pos)
if l_pos == 0:
return None, None
elif l_pos == 1:
return pos[0], None
kv = zip(*pos.items())
# Calculate Euclidean distance (2-norm of difference vectors) and get first two indexes of the sorted array.
# Or a Euclidean-closest nodes index.
distances = np.linalg.norm(kv[1] - curnode, ord=2, axis=1)
i0, i1 = np.argsort(distances)[0:2]
winner1 = tuple((kv[0][i0], distances[i0]))
winner2 = tuple((kv[0][i1], distances[i1]))
return winner1, winner2
class IGNG(NeuralGas):
"""Incremental Growing Neural Gas multidimensional implementation"""
def __init__(self, data, surface_graph=None, eps_b=0.05, eps_n=0.0005, max_age=5,
a_mature=1, output_images_dir='images'):
"""."""
NeuralGas.__init__(self, data, surface_graph, output_images_dir)
self._eps_b = eps_b
self._eps_n = eps_n
self._max_age = max_age
self._a_mature = a_mature
self._num_of_input_signals = 0
self._fignum = 0
self._max_train_iters = 0
# Initial value is a standard deviation of the data.
self._d = np.std(data)
def train(self, max_iterations=100, save_step=0):
"""IGNG training method"""
self._dev_params = None
self._max_train_iters = max_iterations
fignum = self._fignum
self._save_img(fignum, 0)
CHS = self.__calinski_harabaz_score
igng = self.__igng
data = self._data
if save_step < 1:
save_step = max_iterations
old = 0
calin = CHS()
i_count = 0
start_time = self._start_time = time.time()
while old - calin <= 0:
print('Iteration {0:d}...'.format(i_count))
i_count += 1
steps = 1
while steps <= max_iterations:
for i, x in enumerate(data):
igng(x)
if i % save_step == 0:
tm = time.time() - start_time
print('Training time = {} s, Time per record = {} s, Training step = {}, Clusters count = {}, Neurons = {}, CHI = {}'.
format(round(tm, 2),
tm / (i if i and i_count == 0 else len(data)),
i_count,
self.number_of_clusters(),
len(self._graph),
old - calin)
)
self._save_img(fignum, i_count)
fignum += 1
steps += 1
self._d -= 0.1 * self._d
old = calin
calin = CHS()
print('Training complete, clusters count = {}, training time = {} s'.format(self.number_of_clusters(), round(time.time() - start_time, 2)))
self._fignum = fignum
def _train_on_data_item(self, data_item):
steps = 0
igng = self.__igng
# while steps < self._max_train_iters:
while steps < 5:
igng(data_item)
steps += 1
def __long_train_on_data_item(self, data_item):
"""."""
np.append(self._data, data_item)
self._dev_params = None
CHS = self.__calinski_harabaz_score
igng = self.__igng
data = self._data
max_iterations = self._max_train_iters
old = 0
calin = CHS()
i_count = 0
# Strictly less.
while old - calin < 0:
print('Training with new normal node, step {0:d}...'.format(i_count))
i_count += 1
steps = 0
if i_count > 100:
print('BUG', old, calin)
break
while steps < max_iterations:
igng(data_item)
steps += 1
self._d -= 0.1 * self._d
old = calin
calin = CHS()
def _calculate_deviation_params(self, skip_embryo=True):
return super(IGNG, self)._calculate_deviation_params(distance_function_params={'skip_embryo': skip_embryo})
def __calinski_harabaz_score(self, skip_embryo=True):
graph = self._graph
nodes = graph.nodes
extra_disp, intra_disp = 0., 0.
# CHI = [B / (c - 1)]/[W / (n - c)]
# Total numb er of neurons.
#ns = nx.get_node_attributes(self._graph, 'n_type')
c = len([v for v in nodes.values() if v['n_type'] == 1]) if skip_embryo else len(nodes)
# Total number of data.
n = len(self._data)
# Mean of the all data.
mean = np.mean(self._data, axis=1)
pos = nx.get_node_attributes(self._graph, 'pos')
for node, k in pos.items():
if skip_embryo and nodes[node]['n_type'] == 0:
# Skip embryo neurons.
continue
mean_k = np.mean(k)
extra_disp += len(k) * np.sum((mean_k - mean) ** 2)
intra_disp += np.sum((k - mean_k) ** 2)
return (1. if intra_disp == 0. else
extra_disp * (n - c) /
(intra_disp * (c - 1.)))
def _determine_closest_vertice(self, curnode, skip_embryo=True):
"""Where this curnode is actually the x,y index of the data we want to analyze."""
pos = nx.get_node_attributes(self._graph, 'pos')
nodes = self._graph.nodes
distance = sys.maxint
for node, position in pos.items():
if skip_embryo and nodes[node]['n_type'] == 0:
# Skip embryo neurons.
continue
dist = euclidean(curnode, position)
if dist < distance:
distance = dist
return node, distance
def __get_specific_nodes(self, n_type):
return [n for n, p in nx.get_node_attributes(self._graph, 'n_type').items() if p == n_type]
def __igng(self, cur_node):
"""Main IGNG training subroutine"""
# find nearest unit and second nearest unit
winner1, winner2 = self._determine_2closest_vertices(cur_node)
graph = self._graph
nodes = graph.nodes
d = self._d
# Second list element is a distance.
if winner1 is None or winner1[1] >= d:
# 0 - is an embryo type.
graph.add_node(self._count, pos=copy(cur_node), n_type=0, age=0)
winner_node1 = self._count
self._count += 1
return
else:
winner_node1 = winner1[0]
# Second list element is a distance.
if winner2 is None or winner2[1] >= d:
# 0 - is an embryo type.
graph.add_node(self._count, pos=copy(cur_node), n_type=0, age=0)
winner_node2 = self._count
self._count += 1
graph.add_edge(winner_node1, winner_node2, age=0)
return
else:
winner_node2 = winner2[0]
# Increment the age of all edges, emanating from the winner.
for e in graph.edges(winner_node1, data=True):
e[2]['age'] += 1
w_node = nodes[winner_node1]
# Move the winner node towards current node.
w_node['pos'] += self._eps_b * (cur_node - w_node['pos'])
neighbors = nx.all_neighbors(graph, winner_node1)
a_mature = self._a_mature
for n in neighbors:
c_node = nodes[n]
# Move all direct neighbors of the winner.
c_node['pos'] += self._eps_n * (cur_node - c_node['pos'])
# Increment the age of all direct neighbors of the winner.
c_node['age'] += 1
if c_node['n_type'] == 0 and c_node['age'] >= a_mature:
# Now, it's a mature neuron.
c_node['n_type'] = 1
# Create connection with age == 0 between two winners.
graph.add_edge(winner_node1, winner_node2, age=0)
max_age = self._max_age
# If there are ages more than maximum allowed age, remove them.
age_of_edges = nx.get_edge_attributes(graph, 'age')
for edge, age in iteritems(age_of_edges):
if age >= max_age:
graph.remove_edge(edge[0], edge[1])
# If it causes isolated vertix, remove that vertex as well.
#graph.remove_nodes_from(nx.isolates(graph))
for node, v in nodes.items():
if v['n_type'] == 0:
# Skip embryo neurons.
continue
if not graph.neighbors(node):
graph.remove_node(node)
def _save_img(self, fignum, training_step):
"""."""
title='Incremental Growing Neural Gas for the network anomalies detection'
if self._surface_graph is not None:
text = OrderedDict([
('Image', fignum),
('Training step', training_step),
('Time', '{} s'.format(round(time.time() - self._start_time, 2))),
('Clusters count', self.number_of_clusters()),
('Neurons', len(self._graph)),
(' Mature', len(self.__get_specific_nodes(1))),
(' Embryo', len(self.__get_specific_nodes(0))),
('Connections', len(self._graph.edges)),
('Data records', len(self._data))
])
draw_graph3d(self._surface_graph, fignum, title=title)
graph = self._graph
if len(graph) > 0:
draw_graph3d(graph, fignum, clear=False, node_color=(1, 0, 0), title=title,
text=text)
mlab.savefig("{0}/{1}.png".format(self._output_images_dir, str(fignum)))
#mlab.close(fignum)
...
воскресенье, 17 июня 2018 г.
IGNG — инкрементальный алгоритм растущего нейронного газа
Подписаться на:
Комментарии к сообщению (Atom)
Комментариев нет:
Отправить комментарий