Первая версия устройства была сделана на микроконтроллере atmega328 и радио-модуле nRF24L01. Очень быстро стало понятно что для работы с e-ink дисплеем не хватает памяти, а энергопотребление устройства довольно большое.
Тест первой версии устройства
Используется датчик температуры и влажности SHT20. Питание от трех батареек CR2430 (6V) через step down converter.
Следующая версия устройства, была разработана на nRF52832. Для этой версии был выбран радио-модуль от компании Holyiot YJ-16048. Характеристики радио-чипа: ARM Cortex-M4F с ОЗУ 512кб 64кб. Встроенный приемопередатчик 2,4 ГГц, поддержка BLE, ANT, ESB (совместимо с nRF24L01). Подробнее об этой версии рассказано тут.
В этом варианте, проблем с хранением в памяти микроконтроллера большого количества данных — не было. Наличие в nRF52 режима DC-DC, для работы радио в режиме с оптимизацией питания (экономия до 40%), позволило сократить максимальное пиковое потребление до 7-8мА. Вторая версия датчика, как и первая планировалась как модуль для разработки, поэтому вопрос выбора корпуса не ставился.
Тест работы прототипа второй версии.
Так же используется датчик температуры и влажности SHT20. Питание от двух батареек CR2450 через step down конвертер TPS62745DSSR с малым энергопотреблением.
Вторая версия датчика показала хорошие результаты: низкое потребление, длительное время работы на одном комплекте батареек, возможность хранения и вывода «тяжелой» графики.
Естественно проект захотелось довести до состояния законченного устройства. Поэтому первым этапом, стал корпус. Для возможности установки в корпус был переработан дизайн платы. Модель корпуса была разработана в программе SolidWorks. Первые корпуса я печатал на бытовом SLA принтере Anycubic Foton. Плюсами была высокая точность печати и простота пост-обработки корпуса (полировка). Из минусов (на тот момент) печати корпуса полимерной смолой — была хрупкость. Не то чтобы напечатанная модель разваливалась в руках, но если собранное устройство (с батарейками) уронить, то скорее всего корпус треснет (что и случилось однажды).
Так же из за этого свойства материала, были проблемы с закручиванием винтов для соединения двух частей корпуса. После нескольких десятков вкручиваний — выкручиваний винтов в отверстиях под резьбу выработался материал стенок и винты стали прокручиваться. Выше в скобках я написал — «на тот момент», так что сейчас дела обстоят гораздо лучше. На рынке стали появляться смолы, по вполне разумной цене и с отличными прочностными характеристиками.
Тест работы прототипа третьей версии
В этой версии был расширен список сенсоров. Помимо SHT20, ПО может работать и с датчиками si7021, HTU21D, а так же с BME280 (отдельная версия платы).
Начиная с этой версии, устройство может работать от одной батарейки. Работа через step down конвертер или напрямую от батареек, устанавливается перемычками. Так же, с помощью перемычек, устанавливается последовательность подключения двух батареек: последовательное или параллельное. Плюс к этому, расширен список радио-модулей и разработаны версии плат под радио-модули EBYTE и MINEW.
Для работы в более экономичном режиме, была добавлена поддержка чипов nRF52810 и nRF52811, что позволило сократить потребление в спящем режиме до 1,7 — 2мкА.
Чтобы придать корпусу больше прочности, было решено разработать модель корпуса под печать на FDM принтере. Сама модель была упрощена, а из дизайна удалены грани.
Ввиду того, что прочность материалов для FDM печати — выше, была уменьшена толщина стенок, а все зазоры между корпусом и платой были минимизированы.
В настоящий момент, разработаны 3 варианта корпуса, под разные батарейки. От самого тонкого, для батареек СК2430 до максимально прочного, под две батарейки CR2477. Все варианты моделей корпусов доступны на GitHub этого проекта.
Так же было переработано ПО, была добавлена функция конфигурирования устройства через систему Умного дома, что избавило от необходимости перепрошивать устройство.
В настоящий момент, можно настраивать:
- интервалы опроса сенсора температуры и влажности
- интервалы чтения уровня заряда батарейки
- привязка к другим устройствам для передачи данных
- включение режима автономной работы без интеграции в умный дом.
- Так же, в интерфейс была добавлена поддержка нескольких языков и возможность инверсии цвета экрана .
Тест работы обновленной третьей версии.
В видеоролике демонстрируется работа устройства с радиосетью MySensors и конфигурирование устройства через отправку параметров из системы умного дома.
Данный проект и сейчас продолжает активно развиваться. Уже есть прототип четвертой версии, точнее наверное это уже ответвление, так как четвертая версия — существенно переработана по железу. Также, на основе этого проекта родилось еще несколько аналогичных проектов под другие размеры экранов.
Информацию по данному проекту можно найти на GitHub. Проект открытый, на гитхаб доступы файлы для изготовления плат, схемы, модели корпусов и программный код.
По мере того, как мои проекты будут готовы, я обязательно буду о них рассказывать.
Если вам интересно все что связано с DIY, вы являетесть DIY разработчиком или хотите только начать, вам интересно использование DIY девайсов приглашаю всех заинтересованных в телеграм чат — DIYDEV
Всем, кто хочет делать устройства, начать строить автоматизацию своего дома, я предлагаю познакомиться с простым в освоении протоколом Mysensors — телеграм-чат MySensors
А тем кто ищет достаточно взрослые решения для домашней автоматизации приглашаю в телеграм-чат Open Thread. (что такое Thread?)
Всем, как всегда добра!
Комментариев нет:
Отправить комментарий