PIN-диод представляет собой полупроводниковую структуру, состоящую из сильнолегированных p+ и n+ областей и разделяющего их слаболегированного слоя – слоя собственной проводимости (intrinsic). Благодаря наличию этого слоя, т.н. «базы», pin-диод является плохим выпрямителем и находит применение в СВЧ-технике. В данной статье рассмотрены аспекты использования pin-диодов в СВЧ-схемах для практических применений, то есть только необходимые разработчику данные, чтобы максимально точно выполнить проектирование. Статья не претендует на сколько-либо научный труд, а является скорее справочником и сборником разрозненной информации о pin-диодах. Особое внимание уделено особенностям использования pin-диодов на высоком уровне СВЧ-мощности, таких как вопросы пробоя, влияния высокочастотного поля на режим работы диода и проблемы тепловыделения, которые являются ключевыми для разработчика мощных приборов.
Режимы работы pin-диода
Диод открыт
В этом состоянии через него протекает постоянный ток IF, а внешнее воздействие называется прямым смещением. Зная падение напряжения UDC на диоде (~1 В), необходимо резистором ограничить ток в цепи смещения. Для такого включения диода положительный контакт источника должен быть подключен к аноду диода. В таком состоянии диод представляет собой постоянный резистор RS (~1 Ом) для СВЧ-поля. Существует зависимость RS от величины IF и она носит обратно пропорциональный характер, а наличие этой зависимости позволяет использовать диод как электрически управляемый аттенюатор. Область собственной проводимости заполнена носителями заряда, которые имеют некоторое конечное время жизни т. Важно, чтобы период колебаний СВЧ-поля был меньше этого времени, тогда высокочастотное поле не будет влиять на режим работы диода. Также в ряде случаев можно учесть паразитные емкости и индуктивности корпуса или просто индуктивности выводов L диода. Они могут быть либо измерены, либо предоставлены производителем.
Диод закрыт
К аноду приложено отрицательное напряжение, ток через диод не течет, за исключением тока утечки IR (~мкА). Носители заряда в базе отсутствуют. Диод представляет собой плоскопараллельный конденсатор, обкладками которого являются p и n области, а диэлектриком – база. Для СВЧ-поля диод в таком состоянии является емкостью, то есть имеет большое реактивное сопротивление, уменьшающееся с ростом частоты и самого значения емкости:
Кроме того, параллельно емкости включен резистор RP (~кОм), который определяет потери СВЧ-энергии. Иногда в литературе этот резистор рассматривают как включенный последовательно емкости, и тогда он имеет величину, примерно равную RS.
При нулевом смещении на диоде в базе присутствует объемный заряд, который рассасывается при увеличении отрицательного напряжения. Тогда же и емкость стремится к своему конечному значению и после некоторого момента перестает зависеть от значения отрицательного напряжения. В зависимости от конструкции диода емкость может достигать «насыщения» как при единицах вольт отрицательного напряжения смещения, так и нескольких нескольких десятках вольт. В отличие от емкости, величина параллельного резистора увеличивается при увеличении обратного напряжения на диоде.
Основные параметры pin-диодов
Общие параметры
-
Толщина базы W, мкм
-
Паразитные параметры корпуса/выводов (обычно учитывают только индуктивность выводов L, нГн). В дальнейшем рассматриваться не будут, так как необходимы на этапе подробного компьютерного моделирования
-
Тепловое сопротивление θ, °С/Вт. Определяет нагрев диода при выделении на нем мощности, как СВЧ, так и мощности цепей управления
-
Максимальная температура кристалла диода
Для открытого состояния
-
Последовательное сопротивление RS, Ом
-
Время жизни носителей заряда в базе τ (~нс). Зависит от толщины базы и концентрации носителей
Для закрытого состояния
-
Емкость C, пФ. Типичные значения 0,01 – 1 пФ
-
Максимальное обратное напряжение VB – напряжение пробоя. Определяется типом полупроводника и толщиной базы
-
Обратное сопротивление RP, кОм
Частотные ограничения работы pin-диода
Открытое состояние
Модуляция режима работы диода СВЧ-волной в данном режиме отсутствует, при условии, что рабочая частота превышает критическую частоту, равную
Физически это означает, что носители заряда из-за своей инерционности просто не успевают реагировать на изменение СВЧ-поля. При этом и время жизни зарядов, и время переключения диода из одного состояния в другое превышают период волны. Иногда считают, что частота СВЧ-волны должна превышать величину 10/t.
Закрытое состояние
Для данного режима работы диода существуют две критических частоты: снизу
где r и e - параметры базы (релаксационная частота диэлектрика), а сверху - резонансной частотой емкости закрытого диода и индуктивности L выводов.
Тепловое ограничение работы pin-диода
Ключевым моментом работы диода в открытом состоянии является тепловыделение на нем. Мощность, которую необходимо рассеять, складывается из двух составляющих: постоянного тока цепи смещения PDC = UDC x IF и потерь СВЧ-энергии из-за потерь на RS (I2RF x RS). Второе для разных вариантов включения диода в СВЧ-схему рассчитывается по-разному. Эти две составляющие в сумме не должны превышать максимальной рассеиваемой мощности диода и допускать его перегрева. При работе в импульсном режиме необходимо создать такие условия, чтобы диод после прохождения импульса успел остыть за то время, когда импульса нет. Из всех широко применяемых полупроводников худшей теплопроводностью обладает арсенид галлия, поэтому вопрос теплоотвода является одним из ключевых при работе с ним.
Зная тепловое сопротивление диода, можно рассчитать его нагрев исходя из рассеиваемой на нем мощности. Данная температура не должна превышать максимальной для данного типа полупроводника или заданной производителем. Например, для кремния максимальная неразрушающая температура равна примерно 150°С, для карбида кремния – до 500°С. Рассчитана рабочая температура диода может быть так:
где TA – температура окружающей среды или радиатора.
Иногда при работе диода в импульсном режиме используют понятие импульсного теплового сопротивления. Она может быть подставлена в формулу, приведенную выше. Эта характеристика должна быть предоставлена производителем и представлять собой семейство зависимостей θ от времени импульса при различных скважностях. Если такой характеристики нет, то для импульсного режима можно использоваться следующее выражение:
где tИМП – длительность импульса, tПЕР – период повторения импульса, tВР – временная температурная постоянная. Последняя может быть рассчитана как сумма температурных постоянных отдельных слоев (пьедестала, полупроводника, платы и т.п.):
где r – плотность материала, C – удельная теплоемкость (Дж/г×°С), K – теплопроводность (Вт/см×°С), l – толщина слоя, см.
продолжение следует...
Использованная литература
1. Microsemi corp. The PIN diode circuit designers’ handbook.
2. Skyworks solution inc. Design with PIN diodes.
3. О.Г.Вендик, М.Д.Парнес. Антенны с электрическим сканированием (Введение в теорию).
4. Г.С.Хижа, И.Б.Вендик, Е.А.Серебрякова. СВЧ фазовращатели и переключатели.
5. Г.Уотсон. СВЧ-полупроводниковые приборы и их применение.
6. А.В.Вайсблат. Коммутационные устройства СВЧ на полупроводниковых приборах.
7. СВЧ устройства на полупроводниковых диодах. Проектирование и расчет. Под редакцией И.В.Мальского и Б.В.Сестрорецкого.
8. R.Caverly and G.Hiller. Establishing the minimum reverse bias for a p-i-n diode in a high-power switch.
9. Н.Т.Бова, Ю.Г.Ефремов, В.В.Конин. Микроэлектронные устройства СВЧ.
10. MA-COM tech. Comparison of Gallium Arsenide and Silicon PIN diodes for High Speed Microwave Switches.
Комментариев нет:
Отправить комментарий